C.U.SHAH UNIVERSITY Winter Examination-2019

Subject Name: Dynamic of Machines

	Subject Code: 4TE05DOM1		Brai	Branch: B.Tech (Mechanical)		
	Semester	•:5 Date: 25/11/2	.019 Tim	e : 10:30 To 01:30	Marks : 70	
	Instructio	ns:				
	(1) U	Jse of Programmable calcul	ator & any other ele	ctronic instrument is pro	phibited.	
	(2) I	nstructions written on main	answer book are stri	ictly to be obeyed.		
	(3) [Draw neat diagrams and figu	ires (if necessary) at	right places.		
	(4) A	Assume suitable data if need	ed.			
Q-1		Attempt the following qu	estions.			(14)
-	a)	What is equivalent spring st	iffness?			
	b)	Define damping ratio.				
	c)	Define the term "Dynamic	palancing".			
	d)	Define torsional equivalent	shaft.			
	e)	Why radial engines are pref	erred for high speed	applications?		
	f)	Name any two methods for	analysis of multi deg	ree of freedom systems.		
	g)	Define period and cycle of	vibration.			
	h)	When do you say a vibratin	g system is under dar	nped?		
i) What are the conditions to be satisfied for complete balancing of in-line eng				engine?		
	j)	Define node in torsional vib	oration.			
	k)	What is tractive force?				
	l)	Write full form of FFT and	alyzer.			
	m)	Define steady state and tran	sient vibrations			
	n)	Define cam dynamics.				
Atte	mpt any f	our questions from Q-2 to	Q-8			
0-2		Attempt all questions				

(a) What is meant by torsionally equivalent length of a shaft as referred to a stepped shaft? Derive the expression for the equivalent length of a shaft which has several steps.

(b) Explain: (1) Variation in tractive force; 2) Swaying couple. (07)

Q-3 Attempt all questions

- (a) Discuss with neat sketches the longitudinal, transverse and torsional free (07) vibrations.
- (b) Derive an expression for logarithmic decrement.

Q-4 Attempt all questions

- (a) Write short note on Primary and secondary balancing. (07)
- (b) The three cranks of a three cylinder locomotive are all on the same axle and are (07)

set at 120° . The pitch of the cylinders is 1 m and the stroke of each piston is 0.6 m. The reciprocating masses are 300 kg for inside cylinder and 260 kg for each outside cylinder and the planes of rotation of the balance masses are 0.8 m from the inside crank. If 40% of the reciprocating parts are to be balanced, find : 1. The magnitude and the position of the balancing masses required at a radius of 0.6 m; and 2. the hammer blow per wheel when the axle makes 6 r.p.s.

Q-5 Attempt all questions

- (a) Explain the method of balancing a number of masses rotating in different planes. (07)
- (b) The four masses m1, m2 m3 and m4 having their radii of rotation as 200 mm, 150 mm, 250 mm and 300 mm are 200 kg, 300 kg, 240 kg and 260 kg in magnitude respectively. The angles between the successive masses are 45°, 75° and 135° respectively. Find the position and magnitude of the balance mass required, if its radius of rotation is 200 mm. Use analytical method.

Q-6 Attempt all questions

- (a) Write a short notes on :a) Frequency Response Curve b) Vibration Isolation
 - (b) Establish an expression for the natural frequency of free transverse vibrations for (07) a simply supported beam carrying a number of point loads, by Energy method

Q-7 Attempt all questions

- (a) Explain Holzer's method to determine natural frequencies of multi-rotor system (07)
- (b) The measurements on a mechanical vibrating system show that it has a mass of 8 kg and that the springs can be combined to give an equivalent spring of stiffness 5.4 N/mm. If the vibrating system have a dashpot attached which exerts a force of 40 N when the mass has a velocity of 1 m/s, find: 1. critical damping coefficient, 2. damping factor, 3. logarithmic decrement, and 4. ratio of two consecutive amplitudes.

Q-8 Attempt all questions

- (a) Explain the terms: (1) Under damping (2) critical damping (3) Over damping. (07)
- (b) A cantilever shaft 50 mm diameter and 300 mm long has a disc of mass 100 kg at (07) its free end. The Young's modulus for the shaft material is 200 GN/m². Determine the frequency of longitudinal and transverse vibrations of the shaft.

(07)